论文标题
除了进化之外,深度学习没有任何意义
Nothing makes sense in deep learning, except in the light of evolution
论文作者
论文摘要
深度学习(DL)是机器学习的惊人成功分支。 DL的成功通常是通过将分析重点放在特定的近期算法及其特征上来解释的。取而代之的是,我们建议对DL成功的解释必须研究该领域所有算法的人群以及它们随着时间的推移如何发展。我们认为,文化进化是解释DL成功的有用框架。与生物学类似,我们使用“开发”是指将算法的伪代码或文本描述转换为完全训练的模型的过程。这包括编写编程代码,编译和运行程序以及训练模型。如果该过程的所有部分都不适合对齐,则结果模型将毫无用处(如果代码根本运行!)。这是一个约束。进化发展生物学的一个核心组成部分是司令的概念 - 这些是对发展过程的修改,该过程通过自动适应其他组件的变化来避免完全失败。我们建议,从神经网络本身到超参数优化和自动射击的DL中的许多重要创新都可以看作是发展的抑制。这些解体在如何应对实施方面的挑战和DL的整体领域方面对新想法的产生有多容易。我们强调了我们的观点如何既可以提高DL,又可以为进化生物学带来新的见解。
Deep Learning (DL) is a surprisingly successful branch of machine learning. The success of DL is usually explained by focusing analysis on a particular recent algorithm and its traits. Instead, we propose that an explanation of the success of DL must look at the population of all algorithms in the field and how they have evolved over time. We argue that cultural evolution is a useful framework to explain the success of DL. In analogy to biology, we use `development' to mean the process converting the pseudocode or text description of an algorithm into a fully trained model. This includes writing the programming code, compiling and running the program, and training the model. If all parts of the process don't align well then the resultant model will be useless (if the code runs at all!). This is a constraint. A core component of evolutionary developmental biology is the concept of deconstraints -- these are modification to the developmental process that avoid complete failure by automatically accommodating changes in other components. We suggest that many important innovations in DL, from neural networks themselves to hyperparameter optimization and AutoGrad, can be seen as developmental deconstraints. These deconstraints can be very helpful to both the particular algorithm in how it handles challenges in implementation and the overall field of DL in how easy it is for new ideas to be generated. We highlight how our perspective can both advance DL and lead to new insights for evolutionary biology.