论文标题
在温度下,在结合能中近代领先顺序的重夸克动力学
Heavy quarkonium dynamics at next-to-leading order in the binding energy over temperature
论文作者
论文摘要
使用潜在的非相关量子染色体动力学(PNRQCD)有效野外理论,我们得出了一个lindblad方程,以使重量Quarkonium降低密度矩阵的演变,该密度矩阵的进化是准确到近代到统一顺序(NLO),以与培养基温度的结合能的比率相比。与领先截断相比,所得的NLO lindblad方程可用于更可靠地描述低温下夸克 - 格鲁恩等离子体的重夸克进化。对于现象学应用,我们使用量子轨迹算法来数值求解所得的NLO Lindblad方程。为了实现这一目标,我们将三维Lindblad方程的解映射到具有蒙特卡洛采样量子跳跃的一维Schrödinger演变的集合的解决方案。在蒙特卡罗取样的量子跳跃上,我们获得了NLO Lindblad方程的解决方案,而无需在所考虑的状态的角动量量子数中截断。我们还仅使用没有随机跳跃的复杂有效的哈密顿量来考虑系统的演变,发现这为LO和NLO的基态生存概率提供了可靠的近似值。最后,我们与先前的前阶PNRQCD结果和实验数据进行比较,从Atlas,Alice和CMS协作中获得。
Using the potential non-relativistic quantum chromodynamics (pNRQCD) effective field theory, we derive a Lindblad equation for the evolution of the heavy-quarkonium reduced density matrix that is accurate to next-to-leading order (NLO) in the ratio of the binding energy of the state to the temperature of the medium. The resulting NLO Lindblad equation can be used to more reliably describe heavy-quarkonium evolution in the quark-gluon plasma at low temperatures compared to the leading-order truncation. For phenomenological application, we numerically solve the resulting NLO Lindblad equation using the quantum trajectories algorithm. To achieve this, we map the solution of the three-dimensional Lindblad equation to the solution of an ensemble of one-dimensional Schrödinger evolutions with Monte-Carlo sampled quantum jumps. Averaging over the Monte-Carlo sampled quantum jumps, we obtain the solution to the NLO Lindblad equation without truncation in the angular momentum quantum number of the states considered. We also consider the evolution of the system using only the complex effective Hamiltonian without stochastic jumps and find that this provides a reliable approximation for the ground state survival probability at LO and NLO. Finally, we make comparisons with our prior leading-order pNRQCD results and experimental data available from the ATLAS, ALICE, and CMS collaborations.