论文标题

HeterFormer:基于变压器的深度节点表示在异质文本丰富网络上的学习

Heterformer: Transformer-based Deep Node Representation Learning on Heterogeneous Text-Rich Networks

论文作者

Jin, Bowen, Zhang, Yu, Zhu, Qi, Han, Jiawei

论文摘要

网络上的表示学习旨在为每个节点提供有意义的向量表示,从而促进下游任务,例如链接预测,节点分类和节点群集。在异质文本丰富的网络中,由于(1)存在文本或不存在,此任务更具挑战性:某些节点与丰富的文本信息相关联,而其他节点则不相关。 (2)类型的多样性:多种类型的节点和边缘形成异质网络结构。由于审计的语言模型(PLM)已经证明了它们在获得广泛概括的文本表示方面的有效性,因此已经大量的努力将PLM纳入文本富裕网络的代表学习中。但是,很少有人能够共同考虑有效的每个节点的异质结构(网络)信息以及丰富的文本语义信息。在本文中,我们提出了异构形式,这是一种异质网络授权的变压器,在统一模型中执行上下文化的文本编码和异质结构。具体而言,在编码节点文本时,我们将异质结构信息注入每个变压器层。同时,HeterFormer能够表征节点/边缘类型的异质性,并用或没有文本编码节点。我们对来自不同领域的三个大规模数据集进行了三个任务(即,链接预测,节点分类和节点群集)进行全面的实验,在这些大规模数据集中,杂构者的表现优于竞争性基线,均匀,一致地超过了竞争力。

Representation learning on networks aims to derive a meaningful vector representation for each node, thereby facilitating downstream tasks such as link prediction, node classification, and node clustering. In heterogeneous text-rich networks, this task is more challenging due to (1) presence or absence of text: Some nodes are associated with rich textual information, while others are not; (2) diversity of types: Nodes and edges of multiple types form a heterogeneous network structure. As pretrained language models (PLMs) have demonstrated their effectiveness in obtaining widely generalizable text representations, a substantial amount of effort has been made to incorporate PLMs into representation learning on text-rich networks. However, few of them can jointly consider heterogeneous structure (network) information as well as rich textual semantic information of each node effectively. In this paper, we propose Heterformer, a Heterogeneous Network-Empowered Transformer that performs contextualized text encoding and heterogeneous structure encoding in a unified model. Specifically, we inject heterogeneous structure information into each Transformer layer when encoding node texts. Meanwhile, Heterformer is capable of characterizing node/edge type heterogeneity and encoding nodes with or without texts. We conduct comprehensive experiments on three tasks (i.e., link prediction, node classification, and node clustering) on three large-scale datasets from different domains, where Heterformer outperforms competitive baselines significantly and consistently.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源