论文标题

使用基于模型的深神经网络加速化学交换饱和转移成像,并具有合成训练数据

Accelerating Chemical Exchange Saturation Transfer Imaging Using a Model-based Deep Neural Network With Synthetic Training Data

论文作者

Xu, Jianping, Zu, Tao, Hsu, Yi-Cheng, Wang, Xiaoli, Chan, Kannie W. Y., Zhang, Yi

论文摘要

目的:开发基于模型的深神经网络,以重建不足采样的多圈化学交换饱和传输(CEST)数据。理论与方法:受变量网络的启发,CEST图像重建方程将带有具有K空间数据共享块的深神经网络(CEST-VN),该块利用了相邻的CEST框架和3D空间频线散发稳定的稳定式轴的固有冗余,从而利用了x-gomemain中的相关性。此外,设计了基于多池BLOCH-MCCONNELL模拟的新管道,从而从公开可用的解剖学MRI数据中综合了多圈CEST数据。提出的神经网络对模拟数据进行了培训,该数据具有特定于CEST的损失函数,共同测量结构和CEST对比度。使用带有各种加速度因子的回顾性无效数据对三名健康志愿者和五名脑肿瘤患者进行了CEST-VN的性能,并与其他最先进的重建方法进行了比较。结果:拟议的CEST-VN方法在健康和脑肿瘤受试者中产生了高质量的CEST源图像和适当的加权(APTW)地图,始终超过了格拉帕(Grappa),盲目的压缩传感和原始变异网络。随着加速度因子从3增加到6,具有相同超参数的CEST-VN产生了相似和准确的重建,而没有明显的细节或伪像的增加。消融研究证实了联合CEST特异性损耗函数和所使用的数据共享块的有效性。结论:拟议的CEST-VN方法可以通过整合深度学习的多圈数据来提供高质量的CEST源图像和APTW映射,并通过整合深度学习的先验和多线圈灵敏度编码模型。

Purpose: To develop a model-based deep neural network for high-quality image reconstruction of undersampled multi-coil chemical exchange saturation transfer (CEST) data. Theory and Methods: Inspired by the variational network, the CEST image reconstruction equation is unrolled into a deep neural network (CEST-VN) with a k-space data-sharing block that takes advantage of the inherent redundancy in adjacent CEST frames and 3D spatial-frequential convolution kernels that exploit correlations in the x-ω domain. Additionally, a new pipeline based on multiple-pool Bloch-McConnell simulations is devised to synthesize multi-coil CEST data from publicly available anatomical MRI data. The proposed neural network is trained on simulated data with a CEST-specific loss function that jointly measures the structural and CEST contrast. The performance of CEST-VN was evaluated on three healthy volunteers and five brain tumor patients using retrospectively undersampled data with various acceleration factors, and compared with other state-of-the-art reconstruction methods. Results: The proposed CEST-VN method generated high-quality CEST source images and APT-weighted (APTw) maps in healthy and brain tumor subjects, consistently outperforming GRAPPA, blind compressed sensing, and the original variational network. With the acceleration factors increasing from 3 to 6, CEST-VN with the same hyperparameters yielded similar and accurate reconstruction without apparent loss of details or increase of artifacts. The ablation studies confirmed the effectiveness of the joint CEST-specific loss function and data-sharing block used. Conclusions: The proposed CEST-VN method can offer high-quality CEST source images and APTw maps from highly undersampled multi-coil data by integrating the deep-learning prior and multi-coil sensitivity encoding model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源