论文标题

人口统计学属性指导方法对年龄估计

A Demographic Attribute Guided Approach to Age Estimation

论文作者

Cao, Zhicheng, Zhang, Kaituo, Pang, Liaojun, Zhao, Heng

论文摘要

基于面部的年龄估计引起了人们对公共安全监视,人类计算机相互作用等广泛应用的广泛关注。随着深度学习的迅速发展,基于深层神经网络的年龄估算已成为主流实践。但是,寻求更合适的问题范式以了解年龄变化特征,设计相应的损失功能并设计更有效的功能提取模块,仍然需要研究。更重要的是,面部年龄的变化也与种族和性别等人口属性有关,不同年龄段的动态也大不相同。到目前为止,这个问题还没有得到足够的关注。如何使用人口统计属性信息来提高年龄估计的性能尚待进一步探讨。鉴于这些问题,这项研究充分利用了面部属性的辅助信息,并通过属性指导模块提出了一种新的年龄估计方法。我们首先设计了一个多尺度注意残留卷积单元(MARCU),以提取功能强大的面部特征,而不是仅使用其他标准功能模块,例如VGG和Resnet。然后,在通过完整连接(FC)层进行特别处理之后,面部人口统计学属性由1*1卷积层重击,并最终通过全局FC层与年龄特征合并。最后,我们提出了一个新的错误压缩排名(ECR)损失,以更好地收敛年龄回归价值。 UTKFACE,LAP2016和MORPH的三个公共数据集的实验结果表明,与其他最先进的方法相比,我们提出的方法的性能卓越。

Face-based age estimation has attracted enormous attention due to wide applications to public security surveillance, human-computer interaction, etc. With vigorous development of deep learning, age estimation based on deep neural network has become the mainstream practice. However, seeking a more suitable problem paradigm for age change characteristics, designing the corresponding loss function and designing a more effective feature extraction module still needs to be studied. What is more, change of face age is also related to demographic attributes such as ethnicity and gender, and the dynamics of different age groups is also quite different. This problem has so far not been paid enough attention to. How to use demographic attribute information to improve the performance of age estimation remains to be further explored. In light of these issues, this research makes full use of auxiliary information of face attributes and proposes a new age estimation approach with an attribute guidance module. We first design a multi-scale attention residual convolution unit (MARCU) to extract robust facial features other than simply using other standard feature modules such as VGG and ResNet. Then, after being especially treated through full connection (FC) layers, the facial demographic attributes are weight-summed by 1*1 convolutional layer and eventually merged with the age features by a global FC layer. Lastly, we propose a new error compression ranking (ECR) loss to better converge the age regression value. Experimental results on three public datasets of UTKFace, LAP2016 and Morph show that our proposed approach achieves superior performance compared to other state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源