论文标题

通过最佳响应约束重新访问甘恩:透视,方法和应用

Revisiting GANs by Best-Response Constraint: Perspective, Methodology, and Application

论文作者

Liu, Risheng, Gao, Jiaxin, Liu, Xuan, Fan, Xin

论文摘要

在过去的几年中,最小型单级优化公式及其变化已被广泛用于解决生成的对抗网络(GAN)。不幸的是,已经证明,这些交替的学习策略无法准确揭示发生器和鉴别器之间的内在关系,因此很容易导致一系列问题,包括模式崩溃,培训阶段中的梯度和消失的梯度和振荡。制定发电机对鉴别器的潜在依赖性。我们没有采用这些现有的耗时的二线迭代,而是设计了一种隐含的梯度方案,外部产品黑森近似作为我们的快速解决方案策略。 \ emph {值得注意的是,我们证明,即使有不同的动机和表述,我们的柔性BRC方法也可以统一地改善所有现有的甘套。}广泛的定量和定性的实验结果验证了我们所提出的框架的有效性,灵活性和稳定性。

In past years, the minimax type single-level optimization formulation and its variations have been widely utilized to address Generative Adversarial Networks (GANs). Unfortunately, it has been proved that these alternating learning strategies cannot exactly reveal the intrinsic relationship between the generator and discriminator, thus easily result in a series of issues, including mode collapse, vanishing gradients and oscillations in the training phase, etc. In this work, by investigating the fundamental mechanism of GANs from the perspective of hierarchical optimization, we propose Best-Response Constraint (BRC), a general learning framework, that can explicitly formulate the potential dependency of the generator on the discriminator. Rather than adopting these existing time-consuming bilevel iterations, we design an implicit gradient scheme with outer-product Hessian approximation as our fast solution strategy. \emph{Noteworthy, we demonstrate that even with different motivations and formulations, a variety of existing GANs ALL can be uniformly improved by our flexible BRC methodology.} Extensive quantitative and qualitative experimental results verify the effectiveness, flexibility and stability of our proposed framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源