论文标题

Hölder规律性的抛物线分数$ P $ -LAPLACIAN

Hölder regularity for parabolic fractional $p$-Laplacian

论文作者

Liao, Naian

论文摘要

为某些弱解决方案建立了本地Hölder的规律性,以用于一类抛物线分数$ p $ laplace方程,仅可测量可测量的内核。该证明使用Degiorgi的迭代,并完善了Dibenedetto的内在缩放方法。在振荡降低中,对溶液的非局部积分的控制起着至关重要的作用,并且需要在这种内在的缩放场景中进行精致的分析。以任何对数估计和任何比较原则分配,即使对于线性案例,该证明都是新的。

Local Hölder regularity is established for certain weak solutions to a class of parabolic fractional $p$-Laplace equations with merely measurable kernels. The proof uses DeGiorgi's iteration and refines DiBenedetto's intrinsic scaling method. The control of a nonlocal integral of solutions in the reduction of oscillation plays a crucial role and entails delicate analysis in this intrinsic scaling scenario. Dispensing with any logarithmic estimate and any comparison principle, the proof is new even for the linear case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源