论文标题
Fednoil:使用嘈杂标签的联合学习的简单两级抽样方法
FedNoiL: A Simple Two-Level Sampling Method for Federated Learning with Noisy Labels
论文作者
论文摘要
联合学习(FL)旨在在收集培训数据并位于本地设备时培训服务器端的全球模型。因此,实践中的标签通常由不同的专业知识或标准的客户注释,因此包含不同数量的噪音。嘈杂标签的本地培训很容易导致过度适合嘈杂的标签,这是通过聚合对全球模型造成的。尽管最近的强大FL方法考虑了恶意客户端,但他们尚未在每个设备上及其对全球模型的影响介绍本地嘈杂标签。在本文中,我们开发了一种简单的两级抽样方法“ fednoil”,该方法(1)选择客户端在服务器上更强大的全局聚合; (2)选择干净的标签并在客户端纠正伪标签,以进行更强大的本地培训。抽样概率是基于全球模型的干净标签检测而构建的。此外,我们研究了不同的时间表在FL过程中更改聚合之间的本地时期,这特别提高了噪声标签设置中的通信和计算效率。在具有均质/异质数据分布和噪声比的实验中,我们观察到,SOTA FL方法与SOTA噪声标签学习方法的直接组合很容易失败,但是我们的方法始终如一地实现了更好,强大的性能。
Federated learning (FL) aims at training a global model on the server side while the training data are collected and located at the local devices. Hence, the labels in practice are usually annotated by clients of varying expertise or criteria and thus contain different amounts of noises. Local training on noisy labels can easily result in overfitting to noisy labels, which is devastating to the global model through aggregation. Although recent robust FL methods take malicious clients into account, they have not addressed local noisy labels on each device and the impact to the global model. In this paper, we develop a simple two-level sampling method "FedNoiL" that (1) selects clients for more robust global aggregation on the server; and (2) selects clean labels and correct pseudo-labels at the client end for more robust local training. The sampling probabilities are built upon clean label detection by the global model. Moreover, we investigate different schedules changing the local epochs between aggregations over the course of FL, which notably improves the communication and computation efficiency in noisy label setting. In experiments with homogeneous/heterogeneous data distributions and noise ratios, we observed that direct combinations of SOTA FL methods with SOTA noisy-label learning methods can easily fail but our method consistently achieves better and robust performance.