论文标题

透镜:学会导航大规模组合优化的子图嵌入

LeNSE: Learning To Navigate Subgraph Embeddings for Large-Scale Combinatorial Optimisation

论文作者

Ireland, David, Montana, Giovanni

论文摘要

组合优化问题出现在几个应用程序域中,通常是根据图表制定的。这些问题中的许多是NP危险,但并非总是需要确切的解决方案。已经开发了几种启发式方法来提供近乎最佳的解决方案。但是,它们通常不会随图形的大小而舒适。我们提出了一种低复杂的方法,用于识别原始图的(可能较小)的子图(可能要小得多),在该图中可以在合理的时间内运行启发式方法,并且很有可能找到全球近乎最佳的解决方案。我们方法的核心组成部分是晶状体,这是一种增强学习算法,该算法学习如何使用Euclidean子图作为其映射来浏览可能的子图的空间。为了解决CO问题,为透镜提供了使用任何现有启发式方法训练的歧视性嵌入,仅在原始图的一小部分上使用。当对三个问题(顶点覆盖,最大切割和影响最大化)进行测试时,使用最高$ 1000万美元的边缘,Lense确定了通过在整个图表上运行启发式方法,但在总运行时间的一小部分中,产生的解决方案可与溶液相当。

Combinatorial Optimisation problems arise in several application domains and are often formulated in terms of graphs. Many of these problems are NP-hard, but exact solutions are not always needed. Several heuristics have been developed to provide near-optimal solutions; however, they do not typically scale well with the size of the graph. We propose a low-complexity approach for identifying a (possibly much smaller) subgraph of the original graph where the heuristics can be run in reasonable time and with a high likelihood of finding a global near-optimal solution. The core component of our approach is LeNSE, a reinforcement learning algorithm that learns how to navigate the space of possible subgraphs using an Euclidean subgraph embedding as its map. To solve CO problems, LeNSE is provided with a discriminative embedding trained using any existing heuristics using only on a small portion of the original graph. When tested on three problems (vertex cover, max-cut and influence maximisation) using real graphs with up to $10$ million edges, LeNSE identifies small subgraphs yielding solutions comparable to those found by running the heuristics on the entire graph, but at a fraction of the total run time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源