论文标题

有效的深层时空上下文意识到决策网络(DST-CAN),用于预测操作计划

An efficient Deep Spatio-Temporal Context Aware decision Network (DST-CAN) for Predictive Manoeuvre Planning

论文作者

Chowdhury, Jayabrata, Sundaram, Suresh, Rao, Nishanth, Sundararajan, Narasimhan

论文摘要

为了确保其操纵的安全性和效率,自动驾驶汽车(AV)应使用其传感器信息预期周围车辆的未来意图。如果AV可以预测其周围车辆的未来轨迹,则可以做出安全有效的机动决定。在本文中,我们提出了如此深刻的时空上下文感知的决策网络(DST-CAN)模型,用于AVS的预测性操纵计划。内存神经元网络用于预测其周围车辆的未来轨迹。驱动环境的时空信息(过去,现在和预测的未来轨迹)嵌入到上下文感知的网格中。拟议的DST-CAN模型采用这些情境感知的网格作为卷积神经网络的输入,以了解车辆之间的空间关系并确定安全有效的机动决定。 DST-CAN模型还使用高速公路上人类驾驶行为的信息。 DST-CAN的性能评估已使用两个公开可用的NGSIM US-101和I-80数据集进行了。此外,将基于规则的基础真理决定与DST-CAN生成的决策进行了比较。结果清楚地表明,与当前不使用此预测的现有方法相比,与当前现有的方法相比,DST-CAN可以通过3-SEC的相邻车辆预测轨迹做出更好的决策。

To ensure the safety and efficiency of its maneuvers, an Autonomous Vehicle (AV) should anticipate the future intentions of surrounding vehicles using its sensor information. If an AV can predict its surrounding vehicles' future trajectories, it can make safe and efficient manoeuvre decisions. In this paper, we present such a Deep Spatio-Temporal Context-Aware decision Network (DST-CAN) model for predictive manoeuvre planning of AVs. A memory neuron network is used to predict future trajectories of its surrounding vehicles. The driving environment's spatio-temporal information (past, present, and predicted future trajectories) are embedded into a context-aware grid. The proposed DST-CAN model employs these context-aware grids as inputs to a convolutional neural network to understand the spatial relationships between the vehicles and determine a safe and efficient manoeuvre decision. The DST-CAN model also uses information of human driving behavior on a highway. Performance evaluation of DST-CAN has been carried out using two publicly available NGSIM US-101 and I-80 datasets. Also, rule-based ground truth decisions have been compared with those generated by DST-CAN. The results clearly show that DST-CAN can make much better decisions with 3-sec of predicted trajectories of neighboring vehicles compared to currently existing methods that do not use this prediction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源