论文标题
平衡通过注意机制解决大规模多目标优化的探索和剥削
Balancing Exploration and Exploitation for Solving Large-scale Multiobjective Optimization via Attention Mechanism
论文作者
论文摘要
大规模的多目标优化问题(LSMOPS)是指具有多个冲突优化目标以及数百甚至数千个决策变量的优化问题。解决LSMOP的一个关键点是如何平衡探索和开发,以便算法可以在巨大的决策空间中搜索。大规模多主体进化算法从个人的角度考虑探索和剥削之间的平衡。但是,这些算法从决策变量的角度忽略了解决此问题的重要性,这使得该算法缺乏从不同维度进行搜索的能力,并且限制了算法的性能。在本文中,我们提出了一种基于注意机制(LMOAM)的大规模多目标优化算法。注意机制将为每个决策变量分配一个独特的权重,LMOAM将使用此权重来从决策变量级别的探索和剥削之间取得平衡。进行了9种不同的LSMOP基准,以验证本文提出的算法,实验结果验证了我们设计的有效性。
Large-scale multiobjective optimization problems (LSMOPs) refer to optimization problems with multiple conflicting optimization objectives and hundreds or even thousands of decision variables. A key point in solving LSMOPs is how to balance exploration and exploitation so that the algorithm can search in a huge decision space efficiently. Large-scale multiobjective evolutionary algorithms consider the balance between exploration and exploitation from the individual's perspective. However, these algorithms ignore the significance of tackling this issue from the perspective of decision variables, which makes the algorithm lack the ability to search from different dimensions and limits the performance of the algorithm. In this paper, we propose a large-scale multiobjective optimization algorithm based on the attention mechanism, called (LMOAM). The attention mechanism will assign a unique weight to each decision variable, and LMOAM will use this weight to strike a balance between exploration and exploitation from the decision variable level. Nine different sets of LSMOP benchmarks are conducted to verify the algorithm proposed in this paper, and the experimental results validate the effectiveness of our design.