论文标题
路径和恒星的奇数大球的极端图
Extremal graphs for odd-ballooning of paths and stars
论文作者
论文摘要
图$ g $的奇数 - 用$ g_q $表示,是从$ g $中替换$ g $的每个边缘获得的图形,而奇数周期的新顶点都不同。 2002年,Erdös等人。确定$ K $ -FAN的极端图。在2016年,Hou等。 $ q \ geqslant 5 $的奇数恒星奇数极端图。朱等人在2020年。 $ q \ geqslant 3 $的奇数路径的绝对图形。在本文中,我们使用Simonovits的渐进式感应引理来确定恒星的奇数范围和以$ q \ geqslant 3 $的方式的奇数和奇数路径。
The odd-ballooning of a graph $G$, denoted by $G_q$, is the graph obtained from replacing each edge in $G$ by a odd cycle of the same size where the new vertices of the odd cycles are all different. In 2002, Erdös et al. determined the extremal graphs of $k$-fan. In 2016, Hou et al. determined extremal graphs of the odd-ballooning of stars for $q\geqslant 5$. In 2020, Zhu et al. determined extremal graphs of the odd-ballooning of paths for $q\geqslant 3$. In this article, we use progressive induction lemma of Simonovits to determine the extremal graphs of both odd-ballooning of stars and odd-ballooning of paths for $q\geqslant 3$.