论文标题

稀疏神经峰火车的潜伏期校正

Latency correction in sparse neuronal spike trains

论文作者

Kreuz, Thomas, Senocrate, Federico, Cecchini, Gloria, Checcucci, Curzio, Mascaro, Anna Letizia Allegra, Conti, Emilia, Scaglione, Alessandro, Pavone, Francesco Saverio

论文摘要

背景:在神经生理数据中,延迟是指尖峰从一个尖峰列车到另一种尖峰的全球转移,要么是由于响应发作波动或有限的传播速度引起的。这种系统的尖峰时序转移导致同步的虚假降低,需要纠正。新方法:我们提出了一种新的多元潜伏校正算法,适用于相关信息的稀疏数据主要不在速率上,而是每个单个尖峰的时机。该算法旨在纠正系统的延迟,同时保持所有其他类型的嘈杂干扰。它由两个步骤组成,使用模拟退火组成,匹配的尖峰之间的距离最小化。结果:我们显示了它在模拟和真实数据上的有效性:通过中风前后小鼠的钙成像记录的皮质传播模式。使用这些数据的模拟,我们还建立了可以事先评估的标准,以预测我们的算法是否可能对给定数据集产生可观的改进。与现有方法的比较:现有的延迟校正方法依赖于调整速率概况的峰值,这种方法对于具有较低射击的尖峰火车是不可行的,其中单个尖峰的时间包含基本信息。结论:对于任何给定的数据集,可以快速评估该算法的适用性标准,并且在积极结果的情况下,可以轻松地应用延迟校正,因为该算法的源代码是公开可用的。

Background: In neurophysiological data, latency refers to a global shift of spikes from one spike train to the next, either caused by response onset fluctuations or by finite propagation speed. Such systematic shifts in spike timing lead to a spurious decrease in synchrony which needs to be corrected. New Method: We propose a new algorithm of multivariate latency correction suitable for sparse data for which the relevant information is not primarily in the rate but in the timing of each individual spike. The algorithm is designed to correct systematic delays while maintaining all other kinds of noisy disturbances. It consists of two steps, spike matching and distance minimization between the matched spikes using simulated annealing. Results: We show its effectiveness on simulated and real data: cortical propagation patterns recorded via calcium imaging from mice before and after stroke. Using simulations of these data we also establish criteria that can be evaluated beforehand in order to anticipate whether our algorithm is likely to yield a considerable improvement for a given dataset. Comparison with Existing Method(s): Existing methods of latency correction rely on adjusting peaks in rate profiles, an approach that is not feasible for spike trains with low firing in which the timing of individual spikes contains essential information. Conclusions: For any given dataset the criterion for applicability of the algorithm can be evaluated quickly and in case of a positive outcome the latency correction can be applied easily since the source codes of the algorithm are publicly available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源