论文标题

真空为其他可模拟架构提供了量子优势

The vacuum provides quantum advantage to otherwise simulatable architectures

论文作者

Calcluth, Cameron, Ferraro, Alessandro, Ferrini, Giulia

论文摘要

我们考虑了一个由理想的Gottesman -Kitaev -preskill稳定器状态,高斯操作(包括所有理性符号操作和所有实际位移)和同性恋测量的计算模型。我们通过明确提供算法来计算计算的测量结果的概率密度函数,从而证明了这种体系结构在经典上可以有效地模拟。当电路包含条件操作时,我们还提供了采样的方法。该结果是基于著名的Gottesman-Knill定理的扩展,它是通过为手头代码引入适当的稳定器操作员。我们得出的结论是,B.Q.考虑的通用计算模型中具有量子优势的资源可实现量子优势。 Baragiola等。 [物理。莱特牧师。 123,200502(2019)],由上述要素的子集组成,并具有真空状态的规定,确实是真空状态。

We consider a computational model composed of ideal Gottesman-Kitaev-Preskill stabilizer states, Gaussian operations - including all rational symplectic operations and all real displacements -, and homodyne measurement. We prove that such architecture is classically efficiently simulatable, by explicitly providing an algorithm to calculate the probability density function of the measurement outcomes of the computation. We also provide a method to sample when the circuits contain conditional operations. This result is based on an extension of the celebrated Gottesman-Knill theorem, via introducing proper stabilizer operators for the code at hand. We conclude that the resource enabling quantum advantage in the universal computational model considered by B.Q. Baragiola et al. [Phys. Rev. Lett. 123, 200502 (2019)], composed of a subset of the elements given above augmented with a provision of vacuum states, is indeed the vacuum state.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源