论文标题

平行和分布式图神经网络:深入并发分析

Parallel and Distributed Graph Neural Networks: An In-Depth Concurrency Analysis

论文作者

Besta, Maciej, Hoefler, Torsten

论文摘要

图形神经网络(GNN)是深度学习中最强大的工具之一。他们通常以高精度解决非结构化网络上的复杂问题,例如节点分类,图形分类或链接预测。但是,GNN的推理和训练都是复杂的,它们独特地将不规则图处理的特征与密集和常规计算结合在一起。这种复杂性使得在现代平行体系结构上有效执行GNN非常具有挑战性。为了减轻这一点,我们首先设计了GNN中平行性的分类法,考虑数据和模型并行性以及不同形式的管道。然后,我们使用这种分类法来研究许多GNN模型,GNN驱动的机器学习任务,软件框架或硬件加速器中的并行量。我们使用工作深度模型,还可以评估通信量和同步。我们特别关注相关张量的稀疏性/密度,以了解如何有效地应用诸如矢量化等技术。我们还正式分析了GNN管道,并概括了已建立的消息的GNN模型类别以覆盖任意管道深度,从而促进了未来的优化。最后,我们研究了不同形式的异步性,为未来的异步平行GNN管道浏览了路径。我们的分析结果是在一系列见解中综合的,有助于最大程度地提高GNN绩效,并列出了进一步研究有效GNN计算的挑战和机会。我们的工作将有助于推进未来GNN的设计。

Graph neural networks (GNNs) are among the most powerful tools in deep learning. They routinely solve complex problems on unstructured networks, such as node classification, graph classification, or link prediction, with high accuracy. However, both inference and training of GNNs are complex, and they uniquely combine the features of irregular graph processing with dense and regular computations. This complexity makes it very challenging to execute GNNs efficiently on modern massively parallel architectures. To alleviate this, we first design a taxonomy of parallelism in GNNs, considering data and model parallelism, and different forms of pipelining. Then, we use this taxonomy to investigate the amount of parallelism in numerous GNN models, GNN-driven machine learning tasks, software frameworks, or hardware accelerators. We use the work-depth model, and we also assess communication volume and synchronization. We specifically focus on the sparsity/density of the associated tensors, in order to understand how to effectively apply techniques such as vectorization. We also formally analyze GNN pipelining, and we generalize the established Message-Passing class of GNN models to cover arbitrary pipeline depths, facilitating future optimizations. Finally, we investigate different forms of asynchronicity, navigating the path for future asynchronous parallel GNN pipelines. The outcomes of our analysis are synthesized in a set of insights that help to maximize GNN performance, and a comprehensive list of challenges and opportunities for further research into efficient GNN computations. Our work will help to advance the design of future GNNs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源