论文标题
具有不规则和嘈杂数据的神经ODE
Neural ODEs with Irregular and Noisy Data
论文作者
论文摘要
在收集物理过程的数据时,测量噪声是不可或缺的部分。因此,删除噪声是从这些数据中得出结论所必需的,使用这些数据构建动力学模型通常是必不可少的。我们讨论了一种使用嘈杂和不规则采样测量值学习微分方程的方法。在我们的方法论中,可以在深层神经网络与神经常规微分方程(ODE)方法的整合中看到主要创新。确切地说,我们旨在学习一个神经网络,该神经网络(大约)数据的隐式表示以及对因变量的向量场进行建模的附加神经网络。我们通过使用神经ODE来约束这两个网络。在嘈杂的测量结果下,学习描述矢量场的模型的拟议框架非常有效。该方法可以处理在同一时间网格上无法获得因变量的方案。此外,可以很容易地合并特定的结构,例如相对于时间的二阶。我们使用从各种微分方程获得的数据证明了所提出的学习模型方法的有效性,并与神经ode方法进行了比较,该方法对噪声没有任何特殊处理。
Measurement noise is an integral part while collecting data of a physical process. Thus, noise removal is necessary to draw conclusions from these data, and it often becomes essential to construct dynamical models using these data. We discuss a methodology to learn differential equation(s) using noisy and irregular sampled measurements. In our methodology, the main innovation can be seen in the integration of deep neural networks with the neural ordinary differential equations (ODEs) approach. Precisely, we aim at learning a neural network that provides (approximately) an implicit representation of the data and an additional neural network that models the vector fields of the dependent variables. We combine these two networks by constraining using neural ODEs. The proposed framework to learn a model describing the vector field is highly effective under noisy measurements. The approach can handle scenarios where dependent variables are not available at the same temporal grid. Moreover, a particular structure, e.g., second-order with respect to time, can easily be incorporated. We demonstrate the effectiveness of the proposed method for learning models using data obtained from various differential equations and present a comparison with the neural ODE method that does not make any special treatment to noise.