论文标题

全球可线化的动作对拓扑流形

Global linearizable actions on topological manifolds

论文作者

Aristide, Tsemo, Cameroon, Yaounde

论文摘要

令$ m $为有限的尺寸拓扑非球面歧管,其通用封面为$ {\ bf r}^n $。 In this paper, we study $Aff(M)$, the subgroup of the group of homeomorphisms of $M$, whose elements can be lifted to affine transformations of ${\bf R}^n$.我们表明,如果$ m $关闭,则连接的组件$ aff(m)_0 $ aff(m)$在$ m $上自由自由地行为。我们推断出$ aff(m)_0 $是一个可解决的谎言组,如果$ m $是多项式歧管,则nilpotent。 We study the foliation defined by the orbits of $Aff(M)_0$ if $dim(Aff(M)_0)=dim(M)-1$.

Let $M$ be a finite dimensional topological aspherical manifold whose universal cover is ${\bf R}^n$. In this paper, we study $Aff(M)$, the subgroup of the group of homeomorphisms of $M$, whose elements can be lifted to affine transformations of ${\bf R}^n$. We show that if $M$ is closed, the connected component $Aff(M)_0$ of $Aff(M)$ acts locally freely on $M$. We deduce that $Aff(M)_0$ is a solvable Lie group, and is nilpotent if $M$ is a polynomial manifold. We study the foliation defined by the orbits of $Aff(M)_0$ if $dim(Aff(M)_0)=dim(M)-1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源