论文标题

多样性重要:完全利用深度线索可靠的单眼3D对象检测

Diversity Matters: Fully Exploiting Depth Clues for Reliable Monocular 3D Object Detection

论文作者

Li, Zhuoling, Qu, Zhan, Zhou, Yang, Liu, Jianzhuang, Wang, Haoqian, Jiang, Lihui

论文摘要

作为本质上不适的问题,单图像的深度估计是单眼3D对象检测(M3OD)的最具挑战性的部分。许多现有方法依赖于先入为主的假设来弥合单眼图像中缺少的空间信息,并为每个感兴趣的对象预测唯一的深度值。但是,这些假设在实际应用中并不总是存在。为了解决这个问题,我们提出了一个深度解决系统,该系统可以充分探索M3OD中子任务的视觉线索,并为每个目标的深度生成多个估计。由于深度估计本质上依赖于不同的假设,因此它们提出了各种分布。即使某些假设崩溃,其余假设上建立的估计仍然是可靠的。此外,我们制定了深度选择和组合策略。该策略能够消除由崩溃的假设引起的异常估计,并将剩余的估计自适应地结合到单个估计中。这样,我们的深度解决系统变得更加精确和强大。从M3OD的多个子任务中利用线索并在没有引入任何额外信息的情况下,我们的方法在Kitti 3D对象检测基准中相对超过20%的方法超过20%,同时仍保持实时效率。

As an inherently ill-posed problem, depth estimation from single images is the most challenging part of monocular 3D object detection (M3OD). Many existing methods rely on preconceived assumptions to bridge the missing spatial information in monocular images, and predict a sole depth value for every object of interest. However, these assumptions do not always hold in practical applications. To tackle this problem, we propose a depth solving system that fully explores the visual clues from the subtasks in M3OD and generates multiple estimations for the depth of each target. Since the depth estimations rely on different assumptions in essence, they present diverse distributions. Even if some assumptions collapse, the estimations established on the remaining assumptions are still reliable. In addition, we develop a depth selection and combination strategy. This strategy is able to remove abnormal estimations caused by collapsed assumptions, and adaptively combine the remaining estimations into a single one. In this way, our depth solving system becomes more precise and robust. Exploiting the clues from multiple subtasks of M3OD and without introducing any extra information, our method surpasses the current best method by more than 20% relatively on the Moderate level of test split in the KITTI 3D object detection benchmark, while still maintaining real-time efficiency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源