论文标题

两层无线联合学习的动态聚类和功率控制

Dynamic Clustering and Power Control for Two-Tier Wireless Federated Learning

论文作者

Guo, Wei, Huang, Chuan, Qin, Xiaoqi, Yang, Lian, Zhang, Wei

论文摘要

联邦学习(FL)被认为是一种有前途的分布式学习范式,以支持无线边缘的智能应用程序,在该应用程序中,通过边缘设备的协作而无需共享数据,在该范围内迭代了全球模型。但是,由于设备和参数服务器(PS)之间的通信成本相对较高,因此基于设备信息的直接计算可能不是资源效率的。本文研究了基于空的计算(AIRCOMP)的两层无线FL方案的联合通信和学习设计,其中铅设备首先从附近的下属设备收集本地梯度,然后将合并后的结果发送到第二轮聚合的PS。我们为提出的方案建立了收敛结果,并在预期和最佳全局损耗值之间的最佳差距上得出了上限。接下来,基于设备距离和数据重要性,我们提出了一种层次聚类方法来构建两层结构。然后,仅使用瞬时通道状态信息(CSI),我们制定了最佳差距最小化问题,并通过使用有效的交替最小化方法来解决它。数值结果表明,所提出的方案的表现优于基线方案。

Federated learning (FL) has been recognized as a promising distributed learning paradigm to support intelligent applications at the wireless edge, where a global model is trained iteratively through the collaboration of the edge devices without sharing their data. However, due to the relatively large communication cost between the devices and parameter server (PS), direct computing based on the information from the devices may not be resource efficient. This paper studies the joint communication and learning design for the over-the-air computation (AirComp)-based two-tier wireless FL scheme, where the lead devices first collect the local gradients from their nearby subordinate devices, and then send the merged results to the PS for the second round of aggregation. We establish a convergence result for the proposed scheme and derive the upper bound on the optimality gap between the expected and optimal global loss values. Next, based on the device distance and data importance, we propose a hierarchical clustering method to build the two-tier structure. Then, with only the instantaneous channel state information (CSI), we formulate the optimality gap minimization problem and solve it by using an efficient alternating minimization method. Numerical results show that the proposed scheme outperforms the baseline ones.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源