论文标题

物理和数值粘度在流体动力不稳定性中的作用

The role of physical and numerical viscosity in hydrodynamical instabilities

论文作者

Marin-Gilabert, Tirso, Valentini, Milena, Steinwandel, Ulrich P., Dolag, Klaus

论文摘要

开尔文 - 霍尔莫尔兹不稳定性(KHI)的演变被广泛用于评估数值方法的性能。我们利用这种不稳定性在OpenGadget3中测试平滑的颗粒流体动力学(SPH)和无线有限质量(MFM)实现。我们用不同的数值和物理设置来量化SPH和MFM在重现KHI线性生长方面的准确性。在其中,我们考虑:$ i)$数值引起的粘度,以及$ ii)$是出于物理动机,braginskii粘度,并比较它们对KHI增长的影响。我们发现,当改变滋扰参数(例如设置或SPH代码中的邻居数量)时,推断的数值粘度的变化与使用不同流体动力求解器(即MFM)所获得的差异相当。 SPH在存在物理粘度的情况下再现了预期的生长速率的预期降低,并恢复了完全抑制不稳定性所需的物理粘度的阈值水平。对于病毒温度为$ 3 \ times10^7 $ k的星系簇,此级别对应于经典braginskii值的$ \ oft11^{ - 3} $的抑制因子。在这种环境中,我们的SPH实现的固有,数值粘度至少是较小的数量级(即$ \ ol \ oft10^ {-4} $),重新指出,现代SPH方法适合研究银河系中物理粘度的效果。

The evolution of the Kelvin-Helmholtz Instability (KHI) is widely used to assess the performance of numerical methods. We employ this instability to test both the smoothed particle hydrodynamics (SPH) and the meshless finite mass (MFM) implementation in OpenGadget3. We quantify the accuracy of SPH and MFM in reproducing the linear growth of the KHI with different numerical and physical set-ups. Among them, we consider: $i)$ numerical induced viscosity, and $ii)$ physically motivated, Braginskii viscosity, and compare their effect on the growth of the KHI. We find that the changes of the inferred numerical viscosity when varying nuisance parameters such as the set-up or the number of neighbours in our SPH code are comparable to the differences obtained when using different hydrodynamical solvers, i.e. MFM. SPH reproduces the expected reduction of the growth rate in the presence of physical viscosity and recovers well the threshold level of physical viscosity needed to fully suppress the instability. In the case of galaxy clusters with a virial temperature of $3\times10^7$ K, this level corresponds to a suppression factor of $\approx10^{-3}$ of the classical Braginskii value. The intrinsic, numerical viscosity of our SPH implementation in such an environment is inferred to be at least an order of magnitude smaller (i.e. $\approx10^ {-4}$), re-ensuring that modern SPH methods are suitable to study the effect of physical viscosity in galaxy clusters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源