论文标题
重新审视了Davis-Chandrasekhar-Fermi方法
The Davis-Chandrasekhar-Fermi Method Revisited
论文作者
论文摘要
尽管恒星形成区域中星际磁场的观察结果丰富,但尚不清楚磁场在不同的物理尺度下的动态显着性,因为在观察上很难进行磁场强度的直接测量。 Davis-Chandrasekhar-Fermi(DCF)方法是从极化数据估算磁场强度的最常用方法。它基于以下假设:燃气湍流运动是线性alfvén波的场驱动源。在这项工作中,使用恒星形成云的MHD模拟,我们通过检查DCF方法基础的假设的有效性,通过检查其在实际3D空间中的准确性。我们的结果表明,湍流动能与磁能波动之间的DCF关系应视为统计结果,而不是局部特性。然后,我们使用合成观测来开发并研究对原始DCF方法的几种修改,并提出新的配方以提高DCF衍生的磁场强度的准确性。我们进一步指出,DCF分析中最大的不确定性可能来自线宽测量,而不是极化观察结果,尤其是因为可以使用视线线气体速度来估计气体量密度,这是DCF方法中的另一个关键参数。
Despite the rich observational results on interstellar magnetic fields in star-forming regions, it is still unclear how dynamically significant the magnetic fields are at varying physical scales, because direct measurement of the field strength is observationally difficult. The Davis-Chandrasekhar-Fermi (DCF) method has been the most commonly used method to estimate the magnetic field strength from polarization data. It is based on the assumption that gas turbulent motion is the driving source of field distortion via linear Alfvén waves. In this work, using MHD simulations of star-forming clouds, we test the validity of the assumption underlying the DCF method by examining its accuracy in the real 3D space. Our results suggest that the DCF relation between turbulent kinetic energy and magnetic energy fluctuation should be treated as a statistical result instead of a local property. We then develop and investigate several modifications to the original DCF method using synthetic observations, and propose new recipes to improve the accuracy of DCF-derived magnetic field strength. We further note that the biggest uncertainty in the DCF analysis may come from the linewidth measurement instead of the polarization observation, especially since the line-of-sight gas velocity can be used to estimate the gas volume density, another critical parameter in the DCF method.