论文标题
$ \ boldsymbol {o(n)} $ CFT中混合相关器的分析引导程序
Analytic bootstrap of mixed correlators in the $\boldsymbol{O(n)}$ CFT
论文作者
论文摘要
我们使用大型自旋扰动理论和Lorentzian倒置公式来计算订单-U \ varepsilon $校正$ o(n)$ o(n)$ wilson-fisher cft中的混合相关器,价格为$ 4- \ varepsilon $ dimensions。特别是,我们发现所有涉及$φ$和$φ^2 $的相关器中出现的缩放尺寸和平均OPE系数,$ o(n)$的单元和对称的Treaceless表示中的$φ^2 $。我们将一些计算扩展到下一个订单,并找到订单-U \ Varepsilon^2 $数据,用于$ n = 1 $的ISING案例的许多数量。一路上,我们讨论了出现的几个有趣的技术方面,包括对混合保形块进行跨越校正,对反转公式中更高曲折的投影以及多重重组。
We use large spin perturbation theory and the Lorentzian inversion formula to compute order-$\varepsilon$ corrections to mixed correlators in the $O(n)$ Wilson-Fisher CFT in $4 - \varepsilon$ dimensions. In particular, we find the scaling dimensions and averaged OPE coefficients appearing in all correlators involving $φ$ and $φ^2$, for $φ^2$ in both the singlet and symmetric traceless representations of $O(n)$. We extend some computations to the next order, and find order-$\varepsilon^2$ data for a number of quantities for the Ising case at $n = 1$. Along the way, we discuss several interesting technical aspects which arise, including subleading corrections to mixed conformal blocks, projections onto higher twists in the inversion formula, and multiplet recombination.