论文标题

概率理论中发散力矩的重新归一化

Renormalization of divergent moment in probability theory

论文作者

Zhang, Ping, Li, Wen-Du, Dai, Wu-Sheng

论文摘要

一些概率分布有时刻,有些则没有。例如,正态分布具有任意秩序的功率力矩,但是考奇(Cauchy)分布没有功率矩。在本文中,通过与量子场理论中的重新归一化方法类似,我们提出了一种重新归一化的方案,以消除发散力矩中的差异。我们建立了多个重新归一化的程序,以重新归一化同一时刻,以证明重新归一化的力矩非依赖于方案。力量力矩通常是一个积极的力量力矩。在本文中,我们通过类似的重新归如此治疗方法引入了非阳性 - 功率力矩。提出了一种从功率力矩计算对数力矩的方法,该方法可以用作对重新归一化过程的有效性的验证。提出的重新归一化方案是ZETA功能方案,减法方案,加权力矩方案,截止方案,特征功能方案,Mellin转换方案和功率 - 元素力矩方案。所考虑的概率分布是Cauchy分布,征税分布,Q指数分布,Q-Gaussian分布,正态分布,学生的T-分布和Laplace分布。

Some probability distributions have moments, and some do not. For example, the normal distribution has power moments of arbitrary order, but the Cauchy distribution does not have power moments. In this paper, by analogy with the renormalization method in quantum field theory, we suggest a renormalization scheme to remove the divergence in divergent moments. We establish more than one renormalization procedure to renormalize the same moment to prove that the renormalized moment is scheme-independent. The power moment is usually a positive-integer-power moment; in this paper, we introduce nonpositive-integer-power moments by a similar treatment of renormalization. An approach to calculating logarithmic moment from power moment is proposed, which can serve as a verification of the validity of the renormalization procedure. The renormalization schemes proposed are the zeta function scheme, the subtraction scheme, the weighted moment scheme, the cut-off scheme, the characteristic function scheme, the Mellin transformation scheme, and the power-logarithmic moment scheme. The probability distributions considered are the Cauchy distribution, the Levy distribution, the q-exponential distribution, the q-Gaussian distribution, the normal distribution, the Student's t-distribution, and the Laplace distribution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源