论文标题
半稳定正式方案的对数棱柱形位置上
Hodge--Tate crystals on the logarithmic prismatic sites of semi-stable formal schemes
论文作者
论文摘要
令$ \ calo_k $为具有完美残留字段的混合特性$(0,p)$的完整离散评估环。在本文中,对于半稳定的$ p $ -Adic正式方案$ \ frakx $ of $ \ calo_k $,带有刚性的通用光纤$ x $和规范日志结构$ \ calm _ {\ frakx} = \ calo _ {\ frakx} \ frakx} \ cap \ cap \ cap \ calo_x^$ cyrate cyrate tirate cyrate-对数Prismatic网站$(\ frakx,\ calm _ {\ frakx})_ {\ prism} $。作为应用程序,我们在绝对对数的Prismatic网站$(\ frakx,\ calm _ {\ frakx})_ {\ prism} $上给出了等效性$ x _ {\ proet} $上的广义表示。
Let $\calO_K$ be a complete discrete valuation ring of mixed characteristic $(0,p)$ with a perfect residue field. In this paper, for a semi-stable $p$-adic formal scheme $\frakX$ over $\calO_K$ with rigid generic fibre $X$ and canonical log structure $\calM_{\frakX} = \calO_{\frakX}\cap\calO_X^{\times}$, we study Hodge--Tate crystals over the absolute logarithmic prismatic site $(\frakX,\calM_{\frakX})_{\Prism}$. As an application, we give an equivalence between the category of rational Hodge--Tate crystals on the absolute logarithmic prismatic site $(\frakX,\calM_{\frakX})_{\Prism}$ and the category of enhanced log Higgs bundles over $\frakX$, which leads to an inverse Simpson functor from the latter to the category of generalised representations on $X_{\proet}$.