论文标题

强大的失真风险措施

Robust Distortion Risk Measures

论文作者

Bernard, Carole, Pesenti, Silvana M., Vanduffel, Steven

论文摘要

风险措施对基本损失分布的变化(分配不确定性)的鲁棒性对于做出明智的决策至关重要。在本文中,我们量化了具有绝对连续失真功能的失真风险度量类别,当基础损耗分布具有已知的平均值和差异,此外,它在球内(通过WASSERSERTEANS距离指定),其对分布不确定性的稳健性是通过得出其最大(最小)值的稳健性。我们采用等渗预测的技术来规定这些失真风险度量的全面表征,在其价值上,我们获得了准阐释界限,在危险中,危险价值和范围 - 价值 - 危险风险。我们将结果扩展到前两个时刻的不确定性,并为投资组合优化和模拟风险评估提供应用。

The robustness of risk measures to changes in underlying loss distributions (distributional uncertainty) is of crucial importance in making well-informed decisions. In this paper, we quantify, for the class of distortion risk measures with an absolutely continuous distortion function, its robustness to distributional uncertainty by deriving its largest (smallest) value when the underlying loss distribution has a known mean and variance and, furthermore, lies within a ball - specified through the Wasserstein distance - around a reference distribution. We employ the technique of isotonic projections to provide for these distortion risk measures a complete characterisation of sharp bounds on their value, and we obtain quasi-explicit bounds in the case of Value-at-Risk and Range-Value-at-Risk. We extend our results to account for uncertainty in the first two moments and provide applications to portfolio optimisation and to model risk assessment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源