论文标题
使用行为生物识别技术和机器学习评估用户身份验证模式
Evaluation of a User Authentication Schema Using Behavioral Biometrics and Machine Learning
论文作者
论文摘要
近年来,存储在移动设备上的安全数据数量已大大增加。但是,保护此数据的安全措施一直保持不变,几乎没有改进当前身份验证方法(例如生理生物识别或密码)的漏洞。行为生物识别技术最近被研究为解决这些脆弱的身份验证方法的解决方案,而不是这些方法。在这项研究中,我们旨在通过使用行为生物识别技术创建和评估用户身份验证方案来为对行为生物识别的研究做出贡献。本研究中使用的行为生物识别技术包括触摸动力学和电话运动,我们评估了两种生物识别技术的不同单模式和多模式组合的性能。本研究使用两个公开可用的数据集 - 生物媒体和手运动方向和掌握(H -MOG),使用了七种常见的机器学习算法来评估性能。评估中使用的算法包括随机森林,支持矢量机,K-Neart邻居,天真的贝叶斯,逻辑回归,多层感知器和长期短期记忆复发性神经网络,精度的准确率高达86%。
The amount of secure data being stored on mobile devices has grown immensely in recent years. However, the security measures protecting this data have stayed static, with few improvements being done to the vulnerabilities of current authentication methods such as physiological biometrics or passwords. Instead of these methods, behavioral biometrics has recently been researched as a solution to these vulnerable authentication methods. In this study, we aim to contribute to the research being done on behavioral biometrics by creating and evaluating a user authentication scheme using behavioral biometrics. The behavioral biometrics used in this study include touch dynamics and phone movement, and we evaluate the performance of different single-modal and multi-modal combinations of the two biometrics. Using two publicly available datasets - BioIdent and Hand Movement Orientation and Grasp (H-MOG), this study uses seven common machine learning algorithms to evaluate performance. The algorithms used in the evaluation include Random Forest, Support Vector Machine, K-Nearest Neighbor, Naive Bayes, Logistic Regression, Multilayer Perceptron, and Long Short-Term Memory Recurrent Neural Networks, with accuracy rates reaching as high as 86%.