论文标题

关于Schreier型集合与Turán图的修改之间的关系

On a Relation between Schreier-type Sets and a Modification of Turán Graphs

论文作者

Chu, Hung Viet

论文摘要

最近,发现了Schreier型集合与Turán图之间的关系。在本说明中,我们给出一个组合证明并获得关系的概括。具体来说,对于$ p,q \ ge 1 $,让$$ \ mathcal {a} _q:= \ {f \ subset \ mathbb {n}:| f | = 1 \ mbox {or} f \ mbox {是算术的进度,有差异} q \} $$和$$ sr(n,p,p,q)\:= \ \ \ \ \ \ \ \ {f \ subset \ subset \ {1,\ ldots,\ ldots,\ ldots,n \} \ Mathcal {a} _q \}。$$我们表明$$ sr(n,p,q)\ = \ t(n+1,pq+1,q),$ t(\ cdot,\ cdot,\ cdot,\ cdot)$是$ n $ vertex图形的边缘数量,该图形是An $ n $ - vertex的图形,该图形是一个Modification tural ofturán的图形。我们还证明$ sr(n,p,q)$是某些序列的部分总和。

Recently, a relation between Schreier-type sets and Turán graphs was discovered. In this note, we give a combinatorial proof and obtain a generalization of the relation. Specifically, for $p, q\ge 1$, let $$\mathcal{A}_q := \{F\subset\mathbb{N}: |F| = 1 \mbox{ or }F\mbox{ is an arithmetic progression with difference } q\}$$ and $$Sr(n, p, q)\ :=\ \#\{F\subset \{1, \ldots, n\}\,:\, p\min F\ge |F|\mbox{ and }F\in \mathcal{A}_q\}.$$ We show that $$Sr(n, p, q) \ =\ T(n+1, pq+1, q),$$ where $T(\cdot, \cdot, \cdot)$ is the number of edges of an $n$-vertex graph that is a modification of Turán graphs. We also prove that $Sr(n,p,q)$ is the partial sum of certain sequences.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源