论文标题
$ \ Mathscr {B} $的动力学 - 由Behrend集生成的免费系统。我
Dynamics of $\mathscr{B}$-free systems generated by Behrend sets. I
论文作者
论文摘要
我们研究$ \ Mathscr {b} $的复杂性 - 近端和零熵的免费subshifts。这样的子缩影是由Behrend集生成的。该复杂性表明可以实现任何次指数的生长,并估计了某些经典的子缩影(素数和半弹药乘级)。我们还表明,$ \ mathscr {b} $ - 可允许的子缩影仅适用于cocrime集$ \ mathscr {b} $,它允许人们动态表征由Erdös集生成的子移动。
We study the complexity of $\mathscr{B}$-free subshifts which are proximal and of zero entropy. Such subshifts are generated by Behrend sets. The complexity is shown to achieve any subexponential growth and is estimated for some classical subshifts (prime and semiprime subshifts). We also show that $\mathscr{B}$-admissible subshifts are transitive only for coprime sets $\mathscr{B}$ which allows one to characterize dynamically the subshifts generated by the Erdös sets.