论文标题

有限图上的广义Chern-Simons方程的存在定理

Existence theorems for a generalized Chern-Simons equation on finite graphs

论文作者

Gao, Jia, Hou, Songbo

论文摘要

用$ g =(v,e)$表示有限图。我们研究了一个广义的Chern-Simons方程$$Δu=λ\ Mathrm {e}^u(\ Mathrm {E}^{bu}^{bu} -1)+4π\ sum \ sum \ limits_ { $ n $是一个积极的整数; $ p_1,p_2,\ cdot \ cdot \ cdot,p_n $是$ v $的不同顶点,$δ__{p_j} $是$ p_j $的dirac delta质量。我们证明存在一个临界值$λ_c$,因此,如果$λ\geqλ_c$,如果$λ<λ_c$,该方程没有解决方案。我们还证明,如果$λ>λ_c$该方程至少具有两个解决方案,其中包括用于相应功能和山间通用类型解决方案的局部最小化器。

Denote by $G=(V,E)$ a finite graph. We study a generalized Chern-Simons equation $$ Δu=λ\mathrm{e}^u(\mathrm{e}^{bu}-1)+4π\sum\limits_{j=1}^{N}δ_{p_j} $$ on $G$, where $λ$ and $b$ are positive constants; $N$ is a positive integer; $p_1, p_2, \cdot\cdot\cdot, p_N$ are distinct vertices of $V$ and $δ_{p_j}$ is the Dirac delta mass at $p_j$. We prove that there exists a critical value $λ_c$ such that the equation has a solution if $λ\geq λ_c$ and the equation has no solution if $λ<λ_c$. We also prove that if $λ>λ_c$ the equation has at least two solutions which include a local minimizer for the corresponding functional and a mountain-pass type solution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源