论文标题
CellTypegraph:新的几何计算机视觉基准测试
CellTypeGraph: A New Geometric Computer Vision Benchmark
论文作者
论文摘要
对器官中的所有细胞进行分类是植物发育生物学中的一个相关且困难的问题。在这里,我们将问题抽到了一个新的基准测试中,以在地理参考图中进行节点分类。解决它需要学习器官的空间布局,包括对称性。为了允许对新的几何学习方法进行方便的测试,拟南芥胚珠的基准可作为Pytorch数据加载器提供,以及许多预先计算的功能。最后,我们基准了八个最近的图形神经网络体系结构,发现DeepERGCN目前在此问题上效果最好。
Classifying all cells in an organ is a relevant and difficult problem from plant developmental biology. We here abstract the problem into a new benchmark for node classification in a geo-referenced graph. Solving it requires learning the spatial layout of the organ including symmetries. To allow the convenient testing of new geometrical learning methods, the benchmark of Arabidopsis thaliana ovules is made available as a PyTorch data loader, along with a large number of precomputed features. Finally, we benchmark eight recent graph neural network architectures, finding that DeeperGCN currently works best on this problem.