论文标题

非绝热几何量子计算中单量子门的快速演变

Fast Evolution of Single Qubit Gate in Non-Adiabatic Geometric Quantum Computing

论文作者

Tang, Ge, Yang, Xiao-Yong, Yan, Ying, Lu, Jie

论文摘要

我们以单发方式为三级系统实现了几何量子计算的任意单量子门。通过考虑BLOCH球体上状态的最短轨迹,将门的演变时间最小化。大门的持续时间从旋转角度$γ$从零生长,并且测试的t门时间可以通过Rabi频率的参数化,可以将传统的橙色形状的非绝热量子量子计算(NHQC)方案简化为传统橙色形状的非绝热全能量子计算(NHQC)方案的$ \ sim $ 40 \%。我们还证明了某些脉冲对静态引起的误差和拉比误差具有鲁棒性。发现时间依赖性的失沟和狂犬病频率通过由几何相确定的常数相互成比例。这样,在我们的广义模型中,一些以前的NHQC方案可以视为特殊情况。

We implemented arbitrary single qubit gates of geometric quantum computing for a three-level system in a single-shot manner. The evolution time of the gate has been minimized by considering the shortest trajectory of the state on the Bloch sphere. The duration of gates grows from zero with the rotation angle $γ$, and the tested T gate time can be reduced to $\sim$40\% of those in the traditional orange-sliced-shaped path non-adiabatic holonomic quantum computing (NHQC) scheme by the parametrization of Rabi frequency. We also demonstrated that certain pulses are robust against static detuning errors and Rabi errors. The time-dependent detuning and Rabi frequency are found to be proportional to each other by a constant which is determined by the geometric phase. In this way, some previous NHQC schemes can be treated as special cases in our generalized model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源