论文标题
扫描:自杀尝试和构思事件数据集
ScAN: Suicide Attempt and Ideation Events Dataset
论文作者
论文摘要
自杀是一个重要的公共卫生问题,也是全世界死亡的主要原因之一。自杀行为,包括自杀企图(SA)和自杀想法(SI),是自杀死亡的主要危险因素。电子健康记录(EHR)注释中经常记录与患者以前和当前SA和SI有关的信息。准确检测此类文档可能有助于改善患者自杀行为的监视和预测,并提醒医疗专业人员进行自杀预防工作。在这项研究中,我们首先建立了自杀尝试和构思事件(SCAN)数据集,这是公开可用的模拟III数据集的一个子集,该数据集跨越了12K+ EHR注释,并带有19K+带注释的SA和SI事件信息。注释还包含诸如自杀方法之类的属性。我们还提供了强大的基线模型扫描仪(自杀尝试和构思事件检索器),这是一种基于多任务的罗伯塔模型,它具有检索模块,可从EHR的EHR注释中提取所有相关的自杀行为证据,并且是一种预测模块,以识别自杀行为的类型(SA和SI)在患者中确定了这种类型的待遇(SA和SI)。扫描仪的宏加权F1得分为0.83,用于识别自杀行为证据,分别用于患者医院停赛的SA和SI分别为0.78和0.60的宏F1评分。扫描和扫描仪可公开使用。
Suicide is an important public health concern and one of the leading causes of death worldwide. Suicidal behaviors, including suicide attempts (SA) and suicide ideations (SI), are leading risk factors for death by suicide. Information related to patients' previous and current SA and SI are frequently documented in the electronic health record (EHR) notes. Accurate detection of such documentation may help improve surveillance and predictions of patients' suicidal behaviors and alert medical professionals for suicide prevention efforts. In this study, we first built Suicide Attempt and Ideation Events (ScAN) dataset, a subset of the publicly available MIMIC III dataset spanning over 12k+ EHR notes with 19k+ annotated SA and SI events information. The annotations also contain attributes such as method of suicide attempt. We also provide a strong baseline model ScANER (Suicide Attempt and Ideation Events Retriever), a multi-task RoBERTa-based model with a retrieval module to extract all the relevant suicidal behavioral evidences from EHR notes of an hospital-stay and, and a prediction module to identify the type of suicidal behavior (SA and SI) concluded during the patient's stay at the hospital. ScANER achieved a macro-weighted F1-score of 0.83 for identifying suicidal behavioral evidences and a macro F1-score of 0.78 and 0.60 for classification of SA and SI for the patient's hospital-stay, respectively. ScAN and ScANER are publicly available.