论文标题
对分布式数据流的联合异常检测
Federated Anomaly Detection over Distributed Data Streams
论文作者
论文摘要
如今,由于隐私立法和法规以及其他重要的道德问题,电信网络数据的共享也受到了高度限制。它导致在机构,区域和州之间散射数据,从而抑制了AI方法的使用,否则可以大规模利用数据。它创造了建立一个平台来控制此类数据,建立模型或执行计算的需要。在这项工作中,我们提出了一种在异常检测,联合学习和数据流之间建造桥梁的方法。工作的总体目标是在联合环境中检测到分布式数据流的异常。这项工作通过在联合学习环境中调整数据流算法,以用于异常检测并提供强大的框架并证明在现实世界分布式部署方案中的可行性,从而补充了最新的。
Sharing of telecommunication network data, for example, even at high aggregation levels, is nowadays highly restricted due to privacy legislation and regulations and other important ethical concerns. It leads to scattering data across institutions, regions, and states, inhibiting the usage of AI methods that could otherwise take advantage of data at scale. It creates the need to build a platform to control such data, build models or perform calculations. In this work, we propose an approach to building the bridge among anomaly detection, federated learning, and data streams. The overarching goal of the work is to detect anomalies in a federated environment over distributed data streams. This work complements the state-of-the-art by adapting the data stream algorithms in a federated learning setting for anomaly detection and by delivering a robust framework and demonstrating the practical feasibility in a real-world distributed deployment scenario.