论文标题

关联信息和证明

Relating Information and Proof

论文作者

Slissenko, Anatol

论文摘要

在数学中,信息是一个基于概率分布(通常是晦涩的起源)来测量不确定性(熵)的数字。在现实生活中,语言信息是一个基准,更精确地是一种公式。但是这样的公式应通过证据证明是合理的。我试图正式化这种信息的看法。证明信息的衡量标准是基于与正在考虑的公式有关的一组证明。这组可能的证据(“知识库”)定义了一种概率度量,并使用此度量定义了熵重量。该论文主要是概念性的,尚不清楚如何应用这种方法。

In mathematics information is a number that measures uncertainty (entropy) based on a probabilistic distribution, often of an obscure origin. In real life language information is a datum, a statement, more precisely, a formula. But such a formula should be justified by a proof. I try to formalize this perception of information. The measure of informativeness of a proof is based on the set of proofs related to the formulas under consideration. This set of possible proofs (`a knowledge base') defines a probabilistic measure, and entropic weight is defined using this measure. The paper is mainly conceptual, it is not clear where and how this approach can be applied.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源