论文标题
Braneworld Kerr-Newman裸体奇异性的演变
Evolution of Braneworld Kerr-Newman Naked Singularities
论文作者
论文摘要
我们研究了Braneworld Kerr-Newman(K-N)裸奇异品的演变,即它们的质量$ M $,Spin $ a $和Tidal Charge $ b $表征了散装空间的作用,这是由于Keplerian Accretion disk的事物而导致的。我们在应用于潮汐电荷的两个限制案例中构建演变。在第一种情况下,我们假设$ b $ =在进化过程中,在第二个情况下,我们假设无量纲的潮汐电荷$β\ equiv b/m^2 $ = const。对于潮汐电荷的正值,进化等于在电气中性物质增值下标准的K-N裸奇异性的情况。我们证明,反旋转积聚总是将k-n裸奇异性转化为极端的K-N黑洞,并且旋转积聚会导致各种结果。对于无量纲的潮汐电荷$β<0.25 $,可以转换为极端的K-N黑洞,而$β\ in(0.25,1)$ in(0.25,1)$具有足够低的自旋。在其他情况下,积聚以先验状态结束。对于$ 0.25 <β<1 $,这是一种采矿不稳定的k-n裸体性,从而使裸奇异性正式无限地提取能量。在$β> 1 $的情况下,旋转积聚会产生旋转裸奇异性的母乳的无限摩托式结构。旋转积聚的两种非标准结果都意味着由于非线性重力效应而导致这种赤裸裸的奇异性的超越性。
We study evolution of the braneworld Kerr--Newman (K-N) naked singularities, namely their mass $M$ , spin $a$, and tidal charge $b$ characterizing the role of the bulk space, due to matter in-falling from Keplerian accretion disk. We construct the evolution in two limiting cases applied to the tidal charge. In the first case we assume $b$ = const during the evolution, in the second one we assume that the dimensionless tidal charge $β\equiv b/M^2$ = const. For positive values of the tidal charge the evolution is equivalent to the case of the standard K-N naked singularity under accretion of electrically neutral matter. We demonstrate that counter-rotating accretion always converts a K-N naked singularity into an extreme K-N black hole and that the corotating accretion leads to variety of outcomes. The conversion to an extreme K-N black hole is possible for naked singularity with dimensionless tidal charge $β< 0.25$, and $β\in (0.25, 1)$ with sufficiently low spin. In other cases the accretion ends in a transcendental state. For $0.25 < β< 1$ this is a mining unstable K-N naked singularity enabling formally unlimited energy extraction from the naked singularity. In the case of $β> 1$, the corotating accretion creates unlimited torodial structure of mater orbiting the naked singularity. Both non-standard outcomes of the corotating accretion imply a transcendence of such naked singularity due to nonlinear gravitational effects.