论文标题
Heri-Graphs:创建数据集的工作流程,用于通过社交媒体的遗产值和属性的多模式机器学习
Heri-Graphs: A Workflow of Creating Datasets for Multi-modal Machine Learning on Graphs of Heritage Values and Attributes with Social Media
论文作者
论文摘要
价值观(为什么要保护)和属性(要保存的东西)是文化遗产的重要概念。最近的研究一直在使用社交媒体来绘制公众传达给文化遗产的价值观和属性。但是,很少会连接图像,文本,地理位置,时间戳和社交网络结构的异质方式来挖掘其中的语义和结构特征。这项研究介绍了一种方法学工作流,用于使用FLICKR上的帖子和图像来构建此类多模式数据集,以用于基于图形的机器学习(ML)任务涉及遗产值和属性。在使用最先进的ML模型进行数据预处理后,将视觉内容和文本语义的多模式信息建模为节点特征和标签,而它们的社交关系和时空上下文则以多绘图中的链接建模。该工作流程在包含联合国教科文组织世界遗产特性的三个城市(阿姆斯特丹,苏州和威尼斯)进行了测试,后者产生了具有高度一致性的数据集,用于半监督的学习任务。整个过程都用数学符号正式描述,准备在临时任务中应用于技术相关性的ML问题,以及具有社会利益的城市/遗产研究问题。这项研究还可以利用对全球案例中未来研究的遗产价值和属性的理解和映射,旨在旨在采用包容性的遗产管理实践。
Values (why to conserve) and Attributes (what to conserve) are essential concepts of cultural heritage. Recent studies have been using social media to map values and attributes conveyed by public to cultural heritage. However, it is rare to connect heterogeneous modalities of images, texts, geo-locations, timestamps, and social network structures to mine the semantic and structural characteristics therein. This study presents a methodological workflow for constructing such multi-modal datasets using posts and images on Flickr for graph-based machine learning (ML) tasks concerning heritage values and attributes. After data pre-processing using state-of-the-art ML models, the multi-modal information of visual contents and textual semantics are modelled as node features and labels, while their social relationships and spatiotemporal contexts are modelled as links in Multi-Graphs. The workflow is tested in three cities containing UNESCO World Heritage properties - Amsterdam, Suzhou, and Venice, which yielded datasets with high consistency for semi-supervised learning tasks. The entire process is formally described with mathematical notations, ready to be applied in provisional tasks both as ML problems with technical relevance and as urban/heritage study questions with societal interests. This study could also benefit the understanding and mapping of heritage values and attributes for future research in global cases, aiming at inclusive heritage management practices.