论文标题
基于学习的编排,用于动态功能拆分和VRAN的资源分配
Learning-Based Orchestration for Dynamic Functional Split and Resource Allocation in vRANs
论文作者
论文摘要
虚拟化无线电访问网络(VRAN)的关键好处之一是网络管理灵活性。但是,这种多功能性引起了以前未见的网络管理挑战。在本文中,提出了基于学习的零接触式VRAN编排框架(LOFV),以共同选择功能分割并分配虚拟资源,以最大程度地减少长期管理成本。首先,使用集中式RAN系统收集了用户需求和虚拟资源利用率之间行为的测试式测量。收集的数据表明,需求和资源利用之间存在非线性和非单调关系。然后,提出了一个全面的成本模型,该模型将资源过度提供,需求下降,实例化和重新配置考虑。此外,提议的成本模型还捕获了每次分割的不同路由和计算成本。 LOFV是通过我们的测量见解和成本模型的动机,它是使用无模型的增强学习范式开发的。所提出的解决方案是由深度Q学习和基于回归的神经网络的组合构建的,该网络将网络状态和用户的需求映射到拆分和资源控制决策中。我们的数值评估表明,LOFV最多可节省成本的最佳静态策略和45%的最佳完全动态策略。
One of the key benefits of virtualized radio access networks (vRANs) is network management flexibility. However, this versatility raises previously-unseen network management challenges. In this paper, a learning-based zero-touch vRAN orchestration framework (LOFV) is proposed to jointly select the functional splits and allocate the virtualized resources to minimize the long-term management cost. First, testbed measurements of the behaviour between the users' demand and the virtualized resource utilization are collected using a centralized RAN system. The collected data reveals that there are non-linear and non-monotonic relationships between demand and resource utilization. Then, a comprehensive cost model is proposed that takes resource overprovisioning, declined demand, instantiation and reconfiguration into account. Moreover, the proposed cost model also captures different routing and computing costs for each split. Motivated by our measurement insights and cost model, LOFV is developed using a model-free reinforcement learning paradigm. The proposed solution is constructed from a combination of deep Q-learning and a regression-based neural network that maps the network state and users' demand into split and resource control decisions. Our numerical evaluations show that LOFV can offer cost savings by up to 69\% of the optimal static policy and 45\% of the optimal fully dynamic policy.