论文标题
通过双相优化,在超低潜伏期下朝着无损ANN-SNN转换
Towards Lossless ANN-SNN Conversion under Ultra-Low Latency with Dual-Phase Optimization
论文作者
论文摘要
使用异步离散事件运行的尖峰神经网络(SNN)显示出较高的能源效率,并且稀疏计算。实施深SNN的一种流行方法是ANN-SNN转换结合了对ANN的有效培训和SNN的有效推断。但是,准确性损失通常不可忽略,尤其是在几个时间步骤下,这极大地限制了SNN在潜伏敏感的边缘设备上的应用。在本文中,我们首先确定这种性能降解源于SNN中负面或溢出残余膜电位的虚假陈述。受此启发,我们将转换误差分解为三个部分:量化误差,剪辑误差和残留膜电位表示误差。有了这样的见解,我们提出了一种两阶段的转换算法,以分别最小化这些错误。此外,我们显示的每个阶段都以互补的方式取得了显着的性能增长。通过评估包括CIFAR-10,CIFAR-100和Imagenet在内的具有挑战性的数据集,提出的方法在准确性,延迟和能量保存方面证明了最先进的性能。此外,与现有的基于SPIKE的检测算法相比,使用更具挑战性的对象检测任务评估了我们的方法,从而揭示了超低潜伏期下回归性能的显着提高。代码可在https://github.com/windere/snn-cvt-dual-phase上找到。
Spiking neural networks (SNNs) operating with asynchronous discrete events show higher energy efficiency with sparse computation. A popular approach for implementing deep SNNs is ANN-SNN conversion combining both efficient training of ANNs and efficient inference of SNNs. However, the accuracy loss is usually non-negligible, especially under a few time steps, which restricts the applications of SNN on latency-sensitive edge devices greatly. In this paper, we first identify that such performance degradation stems from the misrepresentation of the negative or overflow residual membrane potential in SNNs. Inspired by this, we decompose the conversion error into three parts: quantization error, clipping error, and residual membrane potential representation error. With such insights, we propose a two-stage conversion algorithm to minimize those errors respectively. Besides, We show each stage achieves significant performance gains in a complementary manner. By evaluating on challenging datasets including CIFAR-10, CIFAR- 100 and ImageNet, the proposed method demonstrates the state-of-the-art performance in terms of accuracy, latency and energy preservation. Furthermore, our method is evaluated using a more challenging object detection task, revealing notable gains in regression performance under ultra-low latency when compared to existing spike-based detection algorithms. Codes are available at https://github.com/Windere/snn-cvt-dual-phase.