论文标题
kadomtsev-petviashvili多行孤子的稳定性
Stability of Kadomtsev-Petviashvili multi-line solitons
论文作者
论文摘要
我们证明了扰动的kadomtsev petviashvili多线孤子的长期反向散射理论(IST)。当存在连续和离散的散射数据时,我们的工作是多维集成系统的第一个严格IST,并且连续散射数据的支持不会在复杂平面中退化为轮廓。作为应用程序,Kadomtsev petviashvili多线孤子的$ l^\ infty $稳定性定理是合理的。
We prove the long-standing inverse scattering theory (IST) of perturbed Kadomtsev Petviashvili multi-line solitons. Our work is the first rigorous IST of a multi-dimensional integrable system when both continuous and discrete scattering data are present, and the support of continuous scattering data does not degenerate into contours in the complex plane. As an application, an $L^\infty$-stability theorem of the Kadomtsev Petviashvili multi-line solitons is justified.