论文标题

小抗饱和度

Saturation for Small Antichains

论文作者

Đanković, Irina, Ivan, Maria-Romina

论文摘要

对于给定的正整数$ k $,我们说$ [n] $的子集的家族是$ k $ - antichain如果不包含$ k $成对无与伦比的套件,但是每当我们添加新的套装时,我们确实会找到$ k $的集合。 $ \ text {sat}^*(n,\ mathcal a_ {k})$表示最小的此类家族的大小。 Ferrara,Kay,Kramer,Martin,Reiniger,Smith和Sullivan猜想$ \ text {sat}^*(n,\ Mathcal a_ {k {k})=(k-1)n(k-1)n(1+o(1))$,并以$ k \ leq 4 $ $ k \ leq 4 $证明了这一点。在本文中,我们证明了$ k = 5 $和$ k = 6 $的猜想。此外,我们给出了$ \ text {sat}^*(n,\ mathcal a_5)$和$ \ text {sat}^**(n,\ mathcal a_6)$的确切值。我们还提供了一些受分析启发的开放问题。

For a given positive integer $k$ we say that a family of subsets of $[n]$ is $k$-antichain saturated if it does not contain $k$ pairwise incomparable sets, but whenever we add to it a new set, we do find $k$ such sets. The size of the smallest such family is denoted by $\text{sat}^*(n, \mathcal A_{k})$. Ferrara, Kay, Kramer, Martin, Reiniger, Smith and Sullivan conjectured that $\text{sat}^*(n, \mathcal A_{k})=(k-1)n(1+o(1))$, and proved this for $k\leq 4$. In this paper we prove this conjecture for $k=5$ and $k=6$. Moreover, we give the exact value for $\text{sat}^*(n, \mathcal A_5)$ and $\text{sat}^*(n, \mathcal A_6)$. We also give some open problems inspired by our analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源