论文标题
与持续自学学习的新声音课程的学习表示
Learning Representations for New Sound Classes With Continual Self-Supervised Learning
论文作者
论文摘要
在本文中,我们处理的是不断结合新声音类的声音识别系统。我们的主要目标是开发一个框架,在该框架中可以在不依赖标签数据的情况下更新模型。为此,我们建议采用表示学习,其中使用未标记的数据对编码器进行了培训。该学习框架使研究和实施实际上相关的用例,在这种情况下,只有少量标签在不断的学习环境中可用。我们还做出了经验观察,即即使没有采用任何明确的机制,基于相似性的表示方法在此框架内具有强大的忘记。我们表明,与基于几种基于蒸馏的连续学习方法相比,这种方法的性能相似。
In this paper, we work on a sound recognition system that continually incorporates new sound classes. Our main goal is to develop a framework where the model can be updated without relying on labeled data. For this purpose, we propose adopting representation learning, where an encoder is trained using unlabeled data. This learning framework enables the study and implementation of a practically relevant use case where only a small amount of the labels is available in a continual learning context. We also make the empirical observation that a similarity-based representation learning method within this framework is robust to forgetting even if no explicit mechanism against forgetting is employed. We show that this approach obtains similar performance compared to several distillation-based continual learning methods when employed on self-supervised representation learning methods.