论文标题

从Hua-Pickrell分布中绘制的随机统一矩阵的截断

Truncations of random unitary matrices drawn from Hua-Pickrell distribution

论文作者

Lin, Zhaofeng, Qiu, Yanqi, Wang, Kai

论文摘要

令$ u $为从Hua-pickrell分布中绘制的随机统一矩阵$μ_ {\ mathrm {u}(n+m)}^{(δ)} $ thy unital $ \ mathrm {u}(u}(n+m)$。我们表明,被截断的统一矩阵$ [u_ {i,j}] _ {1 \ leq i,j \ leq n} $形式的确定点过程$ \ mathscr {x} _n^(m,,m,Δ) $Δ\ in \ mathbb {c} $满足$ \ mathrm {re} \,δ> -1/2 $。 我们还证明,确定点过程的$ n \ to \ infty $所采用的限制点过程$ \ mathscr {x} _n^{(m,δ)} $始终是$ \ mathscr {x}}^{[m] [m] [m] [m]} $,独立于$δ$。这里$ \ mathscr {x}^{[m]} $是$ \ mathbb {d} $上的确定点过程 \ begin {split} k^{[m]}(z,w)= \ frac {1} {(1-z \ overline w)^{m+1}}} 相对于参考度量$dμ^{[m]}(z)= \ frac {m}π(1- | z |)^{m-1}dσ(z)$,其中$dσ(z)$是$ \ mathbb {d d} $。

Let $U$ be a random unitary matrix drawn from the Hua-Pickrell distribution $μ_{\mathrm{U}(n+m)}^{(δ)}$ on the unitary group $\mathrm{U}(n+m)$. We show that the eigenvalues of the truncated unitary matrix $[U_{i,j}]_{1\leq i,j\leq n}$ form a determinantal point process $\mathscr{X}_n^{(m,δ)}$ on the unit disc $\mathbb{D}$ for any $δ\in\mathbb{C}$ satisfying $\mathrm{Re}\,δ>-1/2$. We also prove that the limiting point process taken by $n\to\infty$ of the determinantal point process $\mathscr{X}_n^{(m,δ)}$ is always $\mathscr{X}^{[m]}$, independent of $δ$. Here $\mathscr{X}^{[m]}$ is the determinantal point process on $\mathbb{D}$ with weighted Bergman kernel \begin{equation*} \begin{split} K^{[m]}(z,w)=\frac{1}{(1-z\overline w)^{m+1}} \end{split} \end{equation*} with respect to the reference measure $dμ^{[m]}(z)=\frac{m}π(1-|z|)^{m-1}dσ(z)$, where $dσ(z)$ is the Lebesgue measure on $\mathbb{D}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源