论文标题
双曲机平面的多米诺骨牌问题是不可确定的,新的证明
The domino problem of the hyperbolic plane is undecidable, new proof
论文作者
论文摘要
本文是Arxiv论文的新版本,重新审视了2008年作者的先前论文中给出的证明,证明了双曲机平面的一般瓷砖问题是不可证明的,仅证明仅使用常规多边形作为基本形状的基本形状证明了稍强的版本。这个问题是由拉斐尔·罗宾逊(Raphael Robinson)于1971年提出的,他的著名简化证据表明,欧几里得飞机的一般平铺问题是不可证明的,最初由罗伯特·伯杰(Robert Berger)于1966年证明。目前的建筑改善了最近的Arxiv论文。它也大大减少了原始的数量。
The present paper is a new version of the arXiv paper revisiting the proof given in a previous paper of the author published in 2008 proving that the general tiling problem of the hyperbolic plane is undecidable by proving a slightly stronger version using only a regular polygon as the basic shape of the tiles. The problem was raised by a paper of Raphael Robinson in 1971, in his famous simplified proof that the general tiling problem is undecidable for the Euclidean plane, initially proved by Robert Berger in 1966. The present construction improves that of the recent arXiv paper. It also strongly reduces the number of prototiles.