论文标题
第二类的西格尔域上某些nilpotent Lie ofter的无多重表示
Multiplicity-free representations of certain nilpotent Lie groups over Siegel domains of the second kind
论文作者
论文摘要
我们研究了第二类西格尔域的仿射转化组的胞态乘数表示的多重性属性。我们与广义的海森伯格集团及其子组打交道。提供特定表示的必要和充分条件,使其无数次。我们研究了与互相作用和可见作用的几何概念以及不变差分运算符代数的通勤性有关的多重性特性。
We investigate the multiplicity-freeness property for the holomorphic multiplier representations of affine transformation groups of a Siegel domain of the second kind. We deal with the generalized Heisenberg group and its subgroups. Necessary and sufficient conditions for a specific representation to be multiplicity-free are provided. We study the multiplicity-freeness property in relation to the geometrical notions of coisotropic action and visible action, and also the commutativity of the algebra of invariant differential operators.