论文标题

同时着色的顶点和图形的发生率

Simultaneous coloring of vertices and incidences of graphs

论文作者

Mozafari-Nia, Mahsa, Iradmusa, Moharram N.

论文摘要

图$ g $的$ n $ -subdivision是通过更换$ g $的长度$ n $的路径而构建的图形,而$ g $的每个边缘和$ g $的$ m $ popper aus $ g $是一个图形,其顶点与$ g $和$ g $相同的两个顶点,最多是$ m $的$ g $的任何两个顶点。图$ g^{\ frac {m} {n}} $是$ g $的$ n $ subdivision的$ m $ - 功率。在[ N. Iradmusa,M。Mozafari-nia,关于$ \ frac {3} {3} {3} $的彩色的注释 - 子四分之图的功率,第1卷。 79,No.3,2021]猜想$ \ frac {3} {3} {3} $的色度数 - 具有最大度$δ\ geq 2 $的图形功率最多是$2δ+1 $。在本文中,我们介绍了顶点和图表的同时着色,并表明同时正确着色的顶点和$ g $的颜色的最小颜色数量,由$χ_{vi}(vi}(g)$表示,等于$ G^{\ FRAC {\ freac freac \ frac {\ frac {\ frac {\ frac {3} $}} $ c}} = 3}。同样,通过确定上述参数的确切值或上限,我们研究了某些类图的猜想的正确性,例如$ k $ degeNerated图,周期,森林,完整的图形和常规的两部分图。此外,我们研究了该新的色数与图形的其他参数之间的关系。

An $n$-subdivision of a graph $G$ is a graph constructed by replacing a path of length $n$ instead of each edge of $G$ and an $m$-power of $G$ is a graph with the same vertices as $G$ and any two vertices of $G$ at distance at most $m$ are adjacent. The graph $G^{\frac{m}{n}}$ is the $m$-power of the $n$-subdivision of $G$. In [M. N. Iradmusa, M. Mozafari-Nia, A note on coloring of $\frac{3}{3}$-power of subquartic graphs, Vol. 79, No.3, 2021] it was conjectured that the chromatic number of $\frac{3}{3}$-power of graphs with maximum degree $Δ\geq 2$ is at most $2Δ+1$. In this paper, we introduce the simultaneous coloring of vertices and incidences of graphs and show that the minimum number of colors for simultaneous proper coloring of vertices and incidences of $G$, denoted by $χ_{vi}(G)$, is equal to the chromatic number of $G^{\frac{3}{3}}$. Also by determining the exact value or the upper bound for the said parameter, we investigate the correctness of the conjecture for some classes of graphs such as $k$-degenerated graphs, cycles, forests, complete graphs, and regular bipartite graphs. In addition, we investigate the relationship between this new chromatic number and the other parameters of graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源