论文标题
相对双曲组的Anosov表示的扩展定义
An extended definition of Anosov representation for relatively hyperbolic groups
论文作者
论文摘要
我们定义了一个相对双曲线群体的离散表示的新家族,该家族统一了许多现有的定义和较高等级的几何有限行为的示例。该定义包括由Kapovich-Leeb和Zhu和Zhu-Zimmer定义的相对Anosov表示,以及各种不同类型的“几何有限”凸影式歧管的自律表示。我们证明,这些表示都在变形下都是稳定的,其限制对外围亚组的限制满足了动态条件,特别是允许不保留外围亚组的共轭类别的变形。
We define a new family of discrete representations of relatively hyperbolic groups which unifies many existing definitions and examples of geometrically finite behavior in higher rank. The definition includes the relative Anosov representations defined by Kapovich-Leeb and Zhu, and Zhu-Zimmer, as well as holonomy representations of various different types of "geometrically finite" convex projective manifolds. We prove that these representations are all stable under deformations whose restriction to the peripheral subgroups satisfies a dynamical condition, in particular allowing for deformations which do not preserve the conjugacy class of the peripheral subgroups.