论文标题
从深度提升显着性:深度无监督的RGB-D显着性检测
Promoting Saliency From Depth: Deep Unsupervised RGB-D Saliency Detection
论文作者
论文摘要
近年来,人们看到了对RGB-D显着对象检测(RGB-D SOD)的日益增长,部分原因是深度传感器的普及和深度学习技术的快速发展。不幸的是,现有的RGB-D SOD方法通常要求在像素级时彻底注释大量的训练图像。在各种实际情况下,费力且耗时的手动注释已成为真正的瓶颈。另一方面,当前无监督的RGB-D SOD方法仍然很大程度上依赖手工制作的特征表示。这激发了我们在本文中提出的一种深度无监督的RGB-D显着检测方法,这在培训过程中不需要手动像素级注释。我们的培训管道中的两种关键成分实现了这一点。首先,深度插入的显着性更新(DSU)框架旨在自动生产带有迭代后续改进的伪标签,该标签可提供更值得信赖的监督信号,以培训显着性网络。其次,引入了一个细心的培训策略来解决嘈杂的伪标签问题,通过适当重新加权以突出更可靠的伪标签。广泛的实验表明,我们的方法在应对具有挑战性的RGB-D SOD场景方面的效率和有效性。此外,我们的方法也可以适应在完全监督的情况下工作。实证研究表明,我们的方法的合并导致了现有监督的RGB-D SOD模型的性能提高。
Growing interests in RGB-D salient object detection (RGB-D SOD) have been witnessed in recent years, owing partly to the popularity of depth sensors and the rapid progress of deep learning techniques. Unfortunately, existing RGB-D SOD methods typically demand large quantity of training images being thoroughly annotated at pixel-level. The laborious and time-consuming manual annotation has become a real bottleneck in various practical scenarios. On the other hand, current unsupervised RGB-D SOD methods still heavily rely on handcrafted feature representations. This inspires us to propose in this paper a deep unsupervised RGB-D saliency detection approach, which requires no manual pixel-level annotation during training. It is realized by two key ingredients in our training pipeline. First, a depth-disentangled saliency update (DSU) framework is designed to automatically produce pseudo-labels with iterative follow-up refinements, which provides more trustworthy supervision signals for training the saliency network. Second, an attentive training strategy is introduced to tackle the issue of noisy pseudo-labels, by properly re-weighting to highlight the more reliable pseudo-labels. Extensive experiments demonstrate the superior efficiency and effectiveness of our approach in tackling the challenging unsupervised RGB-D SOD scenarios. Moreover, our approach can also be adapted to work in fully-supervised situation. Empirical studies show the incorporation of our approach gives rise to notably performance improvement in existing supervised RGB-D SOD models.