论文标题
De Moivre-Laplace形式的二项式系数上的上限
An upper bound on binomial coefficients in the de Moivre-Laplace form
论文作者
论文摘要
我们建议在整个参数范围内保持在二项式系数上的上限,其形式重复了对称二项式分布的De Moivre-Laplace近似形式。使用界限,我们估计给定布尔函数的连续数量弯曲函数,研究依赖性对Walsh-Hadamard光谱的依赖性,从而限制表示表示的数量,这是数量限制的整数正方形之和。
We suggest an upper bound on binomial coefficients that holds over the entire parameter range and whose form repeats the form of the de Moivre-Laplace approximation of the symmetric binomial distribution. Using the bound, we estimate the number of continuations of a given Boolean function to bent functions, investigate dependencies into the Walsh-Hadamard spectra, obtain restrictions on the number of representations as sum of squares of integers bounded in magnitude.