论文标题
在单位圆上进行自由乘法卷积的规律性
Regularity for free multiplicative convolution on the unit circle
论文作者
论文摘要
结果表明,在单位圆上进行的两个非替代概率度量的自由乘法卷积相对于弧长度量没有连续的奇异部分。长期以来,类似的结果是在线上的自由添加卷积和正线上的自由乘法卷积而闻名。
It is shown that the free multiplicative convolution of two nondegenerate probability measures on the unit circle has no continuous singular part relative to arclength measure. Analogous results have long been known for free additive convolutions on the line and free multiplicative convolution on the positive half-line.