论文标题

对素的对抗性半监督,用于医学图像分段

Voxel-wise Adversarial Semi-supervised Learning for Medical Image Segmentation

论文作者

Lee, Chae Eun, Park, Hyelim, Shin, Yeong-Gil, Chung, Minyoung

论文摘要

半监督的医学图像分割学习是减轻与可靠的大规模注释相关的巨大成本的重要研究领域。最近的半监督方法通过采用一致性正则化,伪标记技术和对抗性学习来证明其有希望的结果。这些方法主要试图通过在预测或嵌入环境中执行一致性来学习标记和未标记数据的分布。但是,以前的方法仅集中在单个类别之间的本地差异最小化或上下文关系上。在本文中,我们介绍了一种基于对抗性学习的新型半监督分割方法,该方法有效地嵌入了多个隐藏层的局部和全局特征,并学习了多个类之间的上下文关系。我们的体素对手学习方法利用了Voxel-Wise特征歧视器,该方法认为多层素素的特征(涉及本地和全局特征)是通过嵌入特定于类的体素特征特征分布来作为输入的。此外,我们通过克服信息丢失和学习稳定性问题来改善以前的表示学习方法,从而使标记数据的丰富表示形式。我们的方法优于当前最佳表现的最先进的半监督学习方法,该方法在左心房(单个类)和Multiorgan数据集(多类)的图像分割上。此外,我们对特征空间的视觉解释表明,我们提出的方法可以从标记和未标记的数据中分布良好且分离的特征空间,从而改善了总体预测结果。

Semi-supervised learning for medical image segmentation is an important area of research for alleviating the huge cost associated with the construction of reliable large-scale annotations in the medical domain. Recent semi-supervised approaches have demonstrated promising results by employing consistency regularization, pseudo-labeling techniques, and adversarial learning. These methods primarily attempt to learn the distribution of labeled and unlabeled data by enforcing consistency in the predictions or embedding context. However, previous approaches have focused only on local discrepancy minimization or context relations across single classes. In this paper, we introduce a novel adversarial learning-based semi-supervised segmentation method that effectively embeds both local and global features from multiple hidden layers and learns context relations between multiple classes. Our voxel-wise adversarial learning method utilizes a voxel-wise feature discriminator, which considers multilayer voxel-wise features (involving both local and global features) as an input by embedding class-specific voxel-wise feature distribution. Furthermore, we improve our previous representation learning method by overcoming information loss and learning stability problems, which enables rich representations of labeled data. Our method outperforms current best-performing state-of-the-art semi-supervised learning approaches on the image segmentation of the left atrium (single class) and multiorgan datasets (multiclass). Moreover, our visual interpretation of the feature space demonstrates that our proposed method enables a well-distributed and separated feature space from both labeled and unlabeled data, which improves the overall prediction results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源